
Computer Science Notes

Chapter 1: Introduction to Computers, Programs, and Java
These notes are meant to accompany Introduction to Java Programming: Brief Version, eighth edition by Y. Daniel Lang.

Programming Skills in a Nutshell:
At the end of this chapter you should have the following programming skills:
1. Copy and paste source code into an IDE (Integrated Development Environment) like eclipse.
2. Recognize that the basic shell into which you’ll place your source code involves a class definition and a main method.
3. To get text to appear in a console window using the println method.
4. To get text to appear in a Dialog Box using the showMessageDialog method (see last page of notes).
5. Here is a template using the key programming skills you should have at this point:

	
public class Chap01Basics
{
	/**
	 * (This is a javadoc comment for the main method.)
	 * @param args is not used
	 */
	public static void main(String[] args)
	{
		//Your code goes after this comment.
		/*Here is another way to make a comment.*/
		
		System.out.println("Hello, World!");
		
	}//end method main(String[])
}//end class Chap01Basics

	

Book’s Statement of Skills:
1. To review computer basics, programs, and operating systems (1.2 – 1.4).
2. To explore the relationship between Java and the World Wide Web (1.5).
3. To distinguish the terms API, IDE, and JDK (1.6).
4. To write a simple Java program (1.7).
5. To display output on the console (1.7).
6. To explain the basic syntax of a Java program (1.7)
7. To create, compile, and run Java programs (1.8).
8. (GUI) To display output using the JOptionPane output dialog box (1.9).

1.1: Introduction
· Computers are programmed to perform tasks
· Different tasks different programs
· Program
· Is a sequence of basic operations executed in succession
· Contains instruction sequences for all tasks it can execute
· This book teaches how to write programs in Java.

1.2: What is a Computer?
· Central processing unit (CPU)
· Memory (main memory)
· Storage devices (disks, CD, tapes)
· Input devices (keyboards, mice, etc.)
· Output devices (monitors, printers, speakers, etc.)
· Communication devices (modems and network interface cards (NICs))
· All connected by a subsystem called a bus that transfers data or power between components.

1.2.1: Central Processing Unit (CPU)
· Is a chip or chips made of transistors that retrieve instructions from memory and executes them.
· Instructions are executed every time the CPU receives a pulse from an internal clock.
· CPU speed is determined by how many operations it can perform per clock tick, and how fast the clock ticks.
· Measures of clock speed include the megahertz (MHz; i.e., 1 million ticks per second) and gigahertz (GHz; i.e., 1 billion ticks per second)
· Current desktop CPUs operate in the GHz range, but perform only a couple operations with each clock tick
· The human brain operates at about 20 Hz (20 “clock ticks” per second), but does billions of operations with each “clock tick”.

1.2.2: Memory
· Is a chip or chips made of transistors that store information as a sequence of 0’s and 1’s.
· All information, including text characters, color pixels, audio sounds, etc. can be converted to numbers, which can then be represented in the binary number system as a sequence of 0’s and 1’s.
· Basic text characters are represented as integers from 0 to 127 (see an ASCII table).
· Pixel colors are represented as a set of 3 integers from 0 to 65,535 to represent the relative brightness of the red, green, and blue light components needed to create the color.
· Audio is represented as a sequence of integers that represent the relative loudness of the sound at discrete time intervals, usually sampled at about 40 kHz.
· A single digit of 0 or 1 is called a bit.
· A group of 8 bits is called a byte.
· Bytes are grouped by powers of 2^10; and given metric prefixes according to their approximate value:
· 2^10 bytes = 1,024 bytes = 1 Kilobyte 103 bytes
· 2^20 bytes = 1,048,576 bytes = 1 Megabyte 106 bytes
· 2^30 bytes = 1,073,741,824 bytes = 1 Gigabyte 109 bytes
· 2^40 bytes = 1,099,511,627,776 bytes = 1 Terabyte 1012 bytes
· 2^50 bytes = 1,125,899,906,842,624 bytes = 1 Petabyte 1015 bytes
· 2^60 bytes = 1,152,921,504,606,846,976 bytes = 1 Exabyte 1018 bytes
· 2^70 bytes = 1,180,591,620,717,411,303,424 bytes = 1 Zettabyte 1021 bytes
· 2^80 bytes = 1,208,925,819,614,629,174,706,176 bytes = 1 Yottabyte 1024 bytes
· According to Lucas Mearian in his March 6, 2007 article “A zettabyte by 2010: Corporate data grows fiftyfold in three years,” “..the world has seen the amount of data grow from 5 exabytes (5 billion gigabytes) in 2003 to 161 exabytes in 2006, … Over the next three years, the world's data will increase sixfold annually and bring the total content count to 988 exabytes by 2010”
· http://www.computerworld.com/s/article/9012364/A_zettabyte_by_2010_Corporate_data_grows_fiftyfold_in_three_years

1.2.3: Storage Devices
· Are devices to store information when power is turned off.
· Disk drives like hard disks and floppy droves
· CD drives like CD-R, CD-RW, and DVD
· Tape drives
· USB flash drives

1.2.4: Input and Output Devices
· Let the user communicate with the computer.
· Monitors
· Keyboards
· Mice
· Printers
· Speakers

1.2.5: Communication Devices
· Let computers communicate with other computers.
· Modems
· network interface cards (NICs)

1.3: Programs
· Programs (software) are instructions to the computer.
· Machine language is a set of primitive instructions built in to every computer
· Example: 1101101010011010
· Assembly language is a “low-level” programming language in which a mnemonic is used to represent a machine-language instruction
· Example: ADDF3 R1, R2, R3
· Assembly was created to make programming “easy” (!).
· Required the use of an assembler program to translate the assembly language into machine language.
· “High-level” languages like Java, C, BASIC, FORTRAN, etc. are English-like and “easy” to learn. These instructions are stored in a source file.
· Example: area = 5 * 5 * 3.14;
· A compiler is a program that translates the high-level source file into machine language.
· A linker then links other needed machine code files to your machine code file, and stores the result as an executable file that runs on your computer

Source File Compiler Machine-Language File Linker Executable File

· The Java compiler takes a slightly different route; it creates a bytecode file (*.class), which is then interpreted line-by-line by a program called the Java Virtual Machine (JVM) to run your program.
· The JVM runs bytecode the same on any machine, so Java source code is completely portable between platforms.

1.4: Operating Systems
· An operating system is a program that runs on a computer to control and manage the activity of the computer.
· Examples: Windows, Mac OS, Linux
· Major tasks:
· Controlling and monitoring system activities.
· Allocating and assigning system resources.
· Scheduling operations.
1.4.1: Controlling and Monitoring System Activities

1.4.2: Allocating and Assigning System Recources

1.4.3: Scheduling Operations
· Multiprogramming allows multiple programs to run simultaneously by sharing the same CPU.
· Multithreading allows subunits within a program to run at the same time.
· Multiprocessing uses two or more processors to perform one task.

Number Systems (From the Seventh Edition…)
The pattern behind positional notation number systems:
· The base-10 (or decimal) number system uses 10 symbols (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) to represent all numbers, with integers greater than 9 written using a positional notation where a position to one space to the left represents a group that is a factor of 10 greater than the group to the right.
· The number 1,259 represents 1 group of 1000 (or 103), 2 groups of 100 (or 102), 5 groups of 10 (or 101), and 9 groups of 1 (or 100).
[image:]

· The base-2 (or binary) number system, uses 2 symbols (0, 1) to represent all numbers, with integers greater than 1 written using a positional notation where a position to one space to the left represents a group that is a factor of 2 greater than the group to the right.
· The binary number 1011 represents 1 group of 8 (or 23), 0 groups of 4 (or 22), 1 groups of 2 (or 21), and 1 groups of 1 (or 20). This adds up to 8 + 0 + 2 + 1 = 11, so we write 10112 = 1110.
[image:]

· The base-16 (or hexadecimal) number system, uses 16 symbols (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F) to represent all numbers, with integers greater than F (or 15) written using a positional notation where a position to one space to the left represents a group that is a factor of 16 greater than the group to the right.
· The hexadecimal number BEAD represents B (or 11) groups of 4096 (or 163), E (or 14) groups of 256 (or 162), A (or 10) groups of 16 (or 161), and D (or 13) groups of 1 (or 160).
This adds up to 11*4096 + 14*256 + 10*16 + 13*1 = 48,813, so we write BEAD16 = 48,81310.
[image:]

You can also look at http://faculty.matcmadison.edu/kmirus/Reference/BinDec.html

Conversion to Decimal Numbers
· Use the positional notation
· Practice: Convert the following numbers to base-10:
· 11002 = 1*8 + 1*4 + 0*2 + 0*1 = 1210

· 1111 11112 = 1*128 + 1*64 + 1*32 + 1*16 + 1*8 + 1*4 + 1*2 + 1*1 = 25510
Note the use of a space every 4 digits,… replaces the comma; 5,798,456
Note: a byte can go up to 255… represents 256 combinations from 0 to 255…

· FF16 = 15*16 + 15*1 = 25510
Note: a byte can be represented with 2 hexadecimal digits…

· 1A9B16 = 1*4096 + 10*256 + 9*16 + 11*1 =

· FFFF16 =

Conversion from Decimal Numbers
· Repeatedly divide the decimal number by the desired base. The remainders are the digits starting with the least significant (farthest right in positional notation).
· write the numbers in reverse order that you generate them.
· Keep going until get a quotient of zero.
· Practice: Convert the following decimal numbers to base-2:
· 256 = 1 0000 00002
256 / 2 = 128 r.0
128 / 2 = 64 r.0
64 / 2 = 32 r.0
32 / 2 = 16 r.0

16 / 2 = 8 r.0
8 / 2 = 4 r.0
4 / 2 = 2 r.0
2 / 2 = 1 r.0

1 / 2 = 0 r.1

· 927 = 11 1001 11112
927 / 2 = 463 r. 1
463 / = 231 r. 1
231 / 2 = 115 r.1
115 / 2 = 57 r. 1

57 / 2 = 28 r. 1
28 / 2 = 14 r.0
14 / 2 = 7 r.0
7 / 2 = 3 r.1

3/2 = 1 r.1
1 / 2 = 0 r.1

· Practice: Convert the following decimal numbers to hexadecimal:
· 256 = 10016
256 / 16 = 16 r.0
16 / 16 = 1 r.0
1 / 16 = 0 r.1

· 927 = 39F16
927 / 16 = 57 r. 15 (F)
57 / 16 = 3 r. 9
3 / 16 = 0 r.3

The Windows calculator can do these conversions for you…

1.5: Java, the World Wide Web, and Beyond
· Java was developed by Sun Microsystems
· Original version was called Oak, and was developed in 1991 for embedded chip programming
· Was renamed Java in 1995 and was re-designed for internet applications
· Characteristics of java:
· Object-oriented
· Distributed
· Interpreted
· Robust
· Secure
· Architecture-neutral
· Portable
· High-performance
· Multithreaded
· Dynamic
· HTML (hypertext markup language) is used for formatting documents on the web, but is not a programming language
· Two ways to run programs run from a web browser are to include a javascript program in the html file or to write a java applet.

1.6: The Java Language Specification, API, JDK, and IDE
· The Java language specification details the syntax and semantics of the Java language http://java.sun.com/docs/books/jls
· The application program interface (API) contains predefined classes (i.e., programs) that you can use in your programming. http://java.sun.com/javase/6/docs/api/
· We will be using the Java Standard edition (Java SE) as opposed to the Enterprise Edition (Java EE), or the Micro Edition (Java ME).
· The latest version of Java is version 6. The programs that let you write and run version 6 Java code are found in the Java Development Toolkit, version 6 (or JDK 6 / JDK 1.6).
· An Integrated Development Environment (IDE) is a program that lets you write source code, debug your source code, compile your source code, and run your program all from one place. Very nice. You used to have to use 3 different programs to do all of that. We will be using eclipse http://www.eclipse.org/downloads/

1.7: A Simple Java Program
Recall page 1:

	
/**
 * The Chap01Basics class implements an application that
 * prints a single line of text to the console, and shows the
 * basics of appropriate code documentation using javadoc comments.
 * (This is a javadoc comment for the class.)
 * @author Kevin Mirus
 */
public class Chap01Basics
{
	/**
	 * (This is a javadoc comment for the main method.)
	 * @param args is not used
	 */
	public static void main(String[] args)
	{
		//Your code goes after this comment.
		/*Here is another way to make a comment.*/
		
		System.out.println("Hello, World!");
		
	}//end method main(String[])
}//end class Chap01Basics

Some stuff that all programs must include:
· Class name
· main method
· ; (the statement terminator)
· Reserved words (like public, class, static, void, main)
· Comments – 3styles:
· //Here is a line comment
· /*Here is a
block comment*/
· /**Here is a javadoc comment
* javadoc comments are meant to be included
* before every class and every method
* and every global public data field in a class
* javadoc comments can include tags like
* @author
* @param
* @return
*/
· Matching braces {} to denote groupings of statements (i.e., a block of code)

Other notes:
· The above program can be used a template for your work in this chapter (i.e., copy it into eclipse and go from there…)
· Java source code is case sensitive… Class is different from class.
· A syntax error occurs when you don’t follow the rules of programming, like using a semicolon at the end of every line or not having parentheses or curly braces occur in open/close pairs. The compiler points out your syntax errors, and your program will not run until you fix them.
· The “atoms” of computer programming in high-level languages are called statements. Statements always end with a semicolon or a closing curly bracket.

Types of Java Statements
· Variable declaration statement (for declaring variables)
· assignment statement (for setting r changing the values stored in the variable)
· object declaration/instantiation statement (for creating instances of an object)
· Method (subroutine) call statement (including input/output routines)
· empty statement
· block statement (One or more statements grouped together using {})
· control statement:
· while statement
· do {} while statement
· if statement
· for statement
· switch statement
· break statement (found in loops and switch statements only)
· continue statement (found in loops only)
· return statement (found in subroutine definitions only)
· One or more statements can be grouped together into a block statement.
· One or more statements or block statements can be grouped together along with a name into a method.
· variables (called instance or data fields) and one or more methods can be grouped together with a name into a class.
· One or more classes can be grouped together into a package.
· One or more classes or packages are grouped together to form a program.

Book source code:
· http://www.cs.armstrong.edu/liang/intro8e/html/Welcome.html
· http://www.cs.armstrong.edu/liang/intro8e/html/Welcome1.html
· http://www.cs.armstrong.edu/liang/intro8e/html/ComputeExpression.html

1.8: Creating, Compiling, and Executing a Java Program
See http://faculty.matcmadison.edu/kmirus/20102011A/804208/804208LB/eclipseTutorial.htm for a tutorial on how to do this in eclipse.

1.9: (GUI) Displaying Text in a Message Dialog Box

	
import javax.swing.JOptionPane;

/** The Chap01GUIBasics class implements an application that
 * displays a welcome message in a Graphical User Interface (GUI) Message Dialog Box,
 * and shows the basics of appropriate code documentation using javadoc comments.
 * This example is taken from Section 1.10, page 19
 * of Y. Daniel Lang's _Introduction to Java Programming: Brief Version_, 7th ed.
 * @author Y.D. Liang
 */

public class Chap01BasicsGUI
{
	/** Displays a welcome message in a GUI Message Dialog Box.
	 * @param args is not used.
	 */
	public static void main(String[] args)
	{
		//Display "Welcome to Java!" in a message dialog box
		JOptionPane.showMessageDialog(null,
			"Welcome to Java!",
			"Title Message",
			JOptionPane.INFORMATION_MESSAGE);

	}// end main(String[])
}//end Chap01GUIBasics

	

Book source code:
· http://www.cs.armstrong.edu/liang/intro8e/html/WelcomeInMessageDialogBox.html

· A package is a folder containing a group of related classes.
· There are many packages built into the java language; to use a class from one of these packages, you need to import the class using an import statement with the full package name that the class belongs to.
· [bookmark: _GoBack]To import all classes in a package, use an asterisk after the package name. Only the needed classes are pulled into your program at runtime.
import javax.swing.*;
· All classes in the package java.lang are implicitly imported in every java program. This includes the System class, which contains the println method used in the other example code in this chapter.
· The method showMessageDialog is static, which means you don’t have to create an instance of the class it belongs to in order to use it. You should not have understood that sentence; we will learn about static methods later on.
· You may notice that Chap01BasicsGui and WelcomeInMessageDialogBox both use the showMessageDialog method, but with different amounts of information in the parentheses. That is because several versions of this method exist, each of which uses different input data. A method is described as overloaded when this is the case.

image2.png
9
T
9 groups of 10°

5 groups of 10"

2 groups of 10°
1 group of 103

image3.png
L

T

1group of 2°
1 group of 2!
0 group of 2°

L goupof 2°

image4.png
T
13 groups of 16°

10 groups of 16'
14 groups of 16°
11 groups 16>

image5.png
@ woometosom

oK

image1.png
(2. problems [@ 3avado [Dedration [EJ console 23 ® %] Cu GH[& |

A8 -0

<terminated> Chap01Basics [Java Application] C:{Program Fles!Javaljre1 6.0_05{binljsvaw.exe (Aug 26, 2008 12:54:13 PM)

Hello, World!

=

)

whae | st |mim |

IBEFEEE

