

[bookmark: _GoBack]Computer Science Notes

Chapter 3: Selections
These notes are meant to accompany Introduction to Java Programming: Brief Version, seventh edition by Y. Daniel Lang.

Programming Skills in a Nutshell:
At the end of this chapter you should have the following programming skills:
1. Translate logical conditions into Boolean expressions.
2. Use simple if … else statements to control program flow.
3. Use nested if statements for multiple outcomes and conditions.
4. Use a switch statement for multiple outcomes and conditions that are based on a positive integer.
5. Here is a template that uses the key programming skills you should have at this point:

	import java.util.Scanner;
//The import statement tells the linker which additional classes that will be used.
//In this case, the Scanner class will be used.
//The Scanner class reads in and stores keystrokes from the keyboard.

public class Chap03Basics
{
	/** Prompts the user to enter a tax year, filing status, and income,
	 * then computes the income tax due according to those values,
	 * and prints the results.
	 * @param args is not used.
	 */
	public static void main(String[] args)
	{
		final int FIRST_TAX_YEAR = 2007;
		final int LAST_TAX_YEAR = 2008;
		final int SINGLE = 1;		//filing status of single
		final int JOINT = 2;		//filing status of married filing jointly
		final int SEPARATE = 3;		//filing status of married filing separately
		final int HEAD = 4;			//filing status of Head of Household
		final String SINGLE_TEXT = "Single";
		final String JOINT_TEXT ="Married Filing Jointly";
		final String SEPARATE_TEXT ="Married Filing Separately";
		final String HEAD_TEXT = "Head of Household";

		//Tell the user what the program does
		String programPurpose = "This program performs U.S. federal tax " +
				"calculations for any year between " +
				FIRST_TAX_YEAR + " and " + LAST_TAX_YEAR;
		System.out.println(programPurpose);

		//Create a Scanner object for reading in the user's input
		Scanner keyboard = new Scanner(System.in);

		//Read in the tax year, and make sure it is in the specified range
		String prompt = "\nPlease enter the tax year (" + FIRST_TAX_YEAR +
			" through " + LAST_TAX_YEAR + "):";
		System.out.println(prompt);
		int taxYear = keyboard.nextInt();
		
		if (taxYear < FIRST_TAX_YEAR || taxYear > LAST_TAX_YEAR)
		{
			System.out.println("Invalid tax year. Program is now terminating.");
			System.exit(0);
		}

		//Read in the income, and make sure it is positive.
		prompt = "\nPlease enter your income:";
		System.out.println(prompt);
		double income = keyboard.nextDouble();
		if (income < 0)
		{
			System.out.println("Invalid (negative) income. " +
					"Program is now terminating.");
			System.exit(0);
		}

		//Read in the filing status, and make sure it is valid.
		System.out.println("\nUse one of the menu choices below to enter " +
				"your filing status.");
		System.out.println(SINGLE + ") " + SINGLE_TEXT);
		System.out.println(JOINT + ") " + JOINT_TEXT);
		System.out.println(SEPARATE + ") " + SEPARATE_TEXT);
		System.out.println(HEAD + ") " + HEAD_TEXT);
		prompt = "\nPlease enter your filing status: ";
		System.out.println(prompt);
		int filingStatus = keyboard.nextInt();
		if (!(filingStatus == SINGLE || filingStatus == JOINT ||
				filingStatus == SEPARATE || filingStatus == HEAD))
		{
			System.out.println("Invalid filing status. " +
					"Program is now terminating.");
			System.exit(0);
		}

		//Declare variables to store the tax rates for each tax bracket.
		//Initialize them with the most common values used from 2003 - 2008.
		//They can be set to new values, if needed, when the income cutoffs get set.
		//See http://www.moneychimp.com/features/tax_brackets.htm for all the info.
		double taxRate1 = 0.10;
		double taxRate2 = 0.15;
		double taxRate3 = 0.25;
		double taxRate4 = 0.28;
		double taxRate5 = 0.33;
		double taxRate6 = 0.35;

		//Declare variables to store the upper income cutoffs for each tax bracket.
		//Initialize them to zero in case something is wrong
		//with the taxYear value or the filingStatus value.
		double cutoff1 = 0.00;
		double cutoff2 = 0.00;
		double cutoff3 = 0.00;
		double cutoff4 = 0.00;
		double cutoff5 = 0.00;

		//Set the income cutoffs for each tax year and filing status
		switch (taxYear)
		{
			case 2007:
				//Set the income cutoffs for each bracket and filing status.
				if (filingStatus == SINGLE)
				{
					cutoff1 = 7825.00;
					cutoff2 = 31850.00;
					cutoff3 = 77100.00;
					cutoff4 = 160850.00;
					cutoff5 = 349700.00;
				}
				else if (filingStatus == JOINT)
				{
					cutoff1 = 15650.00;
					cutoff2 = 63700.00;
					cutoff3 = 128500.00;
					cutoff4 = 195850.00;
					cutoff5 = 349700.00;
				}
				else if (filingStatus == SEPARATE)
				{
					cutoff1 = 7825.00;
					cutoff2 = 31850.00;
					cutoff3 = 64250.00;
					cutoff4 = 97925.00;
					cutoff5 = 174850.00;
				}
				else if (filingStatus == HEAD)
				{
					cutoff1 = 15650.00;
					cutoff2 = 63700.00;
					cutoff3 = 128500.00;
					cutoff4 = 195850.00;
					cutoff5 = 349700.00;
				}
				break;
			case 2008:
				//Set the income cutoffs for each bracket and filing status.
				if (filingStatus == SINGLE)
				{
					cutoff1 = 8025.00;
					cutoff2 = 32550.00;
					cutoff3 = 78850.00;
					cutoff4 = 164550.00;
					cutoff5 = 357700.00;
				}
				else if (filingStatus == JOINT)
				{
					cutoff1 = 16050.00;
					cutoff2 = 65100.00;
					cutoff3 = 131450.00;
					cutoff4 = 200300.00;
					cutoff5 = 357700.00;
				}
				else if (filingStatus == SEPARATE)
				{
					cutoff1 = 8025.00;
					cutoff2 = 32550.00;
					cutoff3 = 65725.00;
					cutoff4 = 100150.00;
					cutoff5 = 178850.00;
				}
				else if (filingStatus == HEAD)
				{
					cutoff1 = 11450.00;
					cutoff2 = 43650.00;
					cutoff3 = 112650.00;
					cutoff4 = 182400.00;
					cutoff5 = 357700.00;
				}
				break;
			default:
				System.out.println("Invalid tax year. Program is now terminating.");
				System.exit(0);
		}//end of switch statement for setting the income cutoffs based on taxYear

		//Compute the tax due.
		double tax = 0.0;
		int taxBracket = 0;
		double taxBracketRate = 0.0;
		if (income <= cutoff1)
			{
				tax = income * taxRate1;
				taxBracket = 1;
				taxBracketRate = taxRate1;
			}
		else if (income <= cutoff2)
		{
			tax = cutoff1 * taxRate1
				+ (income - cutoff1) * taxRate2;
			taxBracket = 2;
			taxBracketRate = taxRate2;
		}
		else if (income <= cutoff3)
			{
				tax = cutoff1 * taxRate1
					+ (cutoff2 - cutoff1) * taxRate2
					+ (income - cutoff2) * taxRate3;
				taxBracket = 3;
				taxBracketRate = taxRate3;
			}
		else if (income <= cutoff4)
			{
				tax = cutoff1 * taxRate1
					+ (cutoff2 - cutoff1) * taxRate2
					+ (cutoff3 - cutoff2) * taxRate3
					+ (income - cutoff3) * taxRate4;
				taxBracket = 4;
				taxBracketRate = taxRate4;
			}
		else if (income <= cutoff5)
			{
				tax = cutoff1 * taxRate1
					+ (cutoff2 - cutoff1) * taxRate2
					+ (cutoff3 - cutoff2) * taxRate3
					+ (cutoff4 - cutoff3) * taxRate4
					+ (income - cutoff4) * taxRate5;
				taxBracket = 5;
				taxBracketRate = taxRate5;
			}
				
		else
			{
				tax = cutoff1 * taxRate1
					+ (cutoff2 - cutoff1) * taxRate2
					+ (cutoff3 - cutoff2) * taxRate3
					+ (cutoff4 - cutoff3) * taxRate4
					+ (cutoff5 - cutoff4) * taxRate5
					+ (income - cutoff5) * taxRate6;
				taxBracket = 6;
				taxBracketRate = taxRate6;
			}
		
		System.out.println("\nHere are your results:");
		System.out.println("filing year = " + taxYear);
		
		String filingStatusEcho = "filing status = ";
		if (filingStatus == SINGLE)
			filingStatusEcho += SINGLE_TEXT;
		else if (filingStatus == JOINT)
			filingStatusEcho += JOINT_TEXT;
		else if (filingStatus == SEPARATE)
			filingStatusEcho += SEPARATE_TEXT;
		else if (filingStatus == HEAD)
			filingStatusEcho += HEAD_TEXT;
		System.out.println(filingStatusEcho);
		
		System.out.println("income = $"
				+ String.format("%,12.2f", income));
		System.out.println("income tax owed = $" + String.format("%,12.2f", tax));
		System.out.println("tax bracket = " + taxBracket);
		System.out.println("tax bracket rate = "
				+ String.format("%4.1f", taxBracketRate*100) + "%");
		
		System.out.println("\nProgram is now terminating.");
	}//end method main(String[])
}//end of class Chap03Basics

	This program performs U.S. federal tax calculations for any year between 2007 and 2008

Please enter the tax year (2007 through 2008):
2007

Please enter your income:
50000

Use one of the menu choices below to enter your filing status.
1) Single
2) Married Filing Jointly
3) Married Filing Separately
4) Head of Household

Please enter your filing status:
1

Here are your results:
filing year = 2007
filing status = Single
income = $ 50,000.00
income tax owed = $ 8,923.75
tax bracket = 3
tax bracket rate = 25.0%

Program is now terminating.

	This program performs U.S. federal tax calculations for any year between 2007 and 2008

Please enter the tax year (2007 through 2008):
2010
Invalid tax year. Program is now terminating.

Book’s Statement of Skills:
1. To declare boolean type and use Boolean values true and false. (3.2)
2. To apply relational operators (<, <=, ==, !=, >, >=)and logic operators (!, &&, ||, ^) to write Boolean expressions. (3.2)
3. To use Boolean expressions to control selection statements. (3.3 – 3.5)
4. To implement selection control using if and nested if statements. (3.3)
5. To implement selection control using switch statements. (3.4)
6. To write expressions using the conditional operator. (3.5)
7. To display formatted output using the System.out.printf method and to format strings using the String.format method. (3.6)
8. To examine the rules governing operator precedence associativity. (3.7)
9. (GUI) To get user confirmation using confirmation dialogs. (3.8)

Section 3.1: Introduction
This chapter will teach you how to use if and switch statements, which are used to determine which lines of code a program executes based on certain conditions like user input or the values stored in variables.

Example:
Problem to solve: If the user enters a negative value for a radius of a circle, then display an error message; otherwise compute and display the circumference.

↓ Pseudocode..
Get the user’s input for a circle radius
If (the radius is negative)
	Then print an error message
Otherwise
	Compute and print the circumference

↓ Real code
	import java.util.Scanner;

public class CircleCircumference
{
	public static void main(String[] args)
	{
		System.out.println("This program will compute the circumference of " +
				"a circle given its radius.");
		
		Scanner keyboard = new Scanner(System.in);
		
		// Get the user’s input for a circle radius
		System.out.println("Enter the radius of a circle:");
		double radius = keyboard.nextDouble();

		if (radius < 0.0)
		 System.out.println("Bad entry; you entered r = " + radius +
		 		 ", and the radius of a circle should NOT be negative.");
		else
		 System.out.println("For a circle of radius " + radius +
		 		 ", the circumference is: " + (2*Math.PI*radius) + ".");
	}
}

	This program will compute the circumference of a circle given its radius.
Enter the radius of a circle:
-15
Bad entry; you entered r = -15.0, and the radius of a circle should NOT be negative.

	This program will compute the circumference of a circle given its radius.
Enter the radius of a circle:
12
For a circle of radius 12.0, the circumference is: 75.39822368615503.

Section 3.2: boolean Data Type and Operations
· The boolean data type contains one of two values: true or false.
· What can be true or false??? the answer to a comparison of numbers…
· The comparison operators are: <, <=, >, >=, = =, !=
· Comparison operators are used to compare numeric values.
· The result of a comparison calculation is a Boolean value of true or false.
· true and false Are Boolean literals and reserved keywords
· Boolean variables hold Boolean values.
· The Boolean operators are: !, &&. ||, and ^
· Boolean operators relate boolean expressions to determine the overall truth or falsehood of the statement.
· Where does the adjective “Boolean” come from? It is in honor of British mathematician George Boole, who laid the groundwork for modern logic theory in his book An Investigation of the Laws of Thought, on Which are Founded the Mathematical Theories of Logic and Probabilities (1854).

Comparison operators: used to compare the value of two numerical expressions.
	Operator
	Name
	Example
	Result

	<
	Less than
	1 < 2
	true

	<=
	Less than or equal to
	1 <= 2
	true

	>
	Greater than
	1 > 2
	false

	>=
	Greater than or equal to
	1 >= 1
	true

	==
	Equal to
	1 = = 2
	false

	!=
	Not equal to
	1 != 2
	true

Boolean operators: used to determine the truth of a combination of expressions.
	Operator
	Name
	Description

	!
	Not
	Logical negation

	&&
	And
	Logical conjunction

	||
	Or
	Logical disjunction

	^
	Exclusive or
	Logical exclusion

Practice:
Fill in the following truth tables:
	Truth Table for && (AND)

	Example
	Value of expr1
	Value of expr2
	Value of exprJoint

	boolean expr1 = 3 > 2;
boolean expr2 = 1 < 5;
boolean exprJoint = expr1 && expr2;
	true
	True
	True

	boolean expr1 = 3 > 2;
boolean expr2 = 1 > 5;
boolean exprJoint = expr1 && expr2;
	True
	False
	False

	boolean expr1 = 3 < 2;
boolean expr2 = 1 < 5;
boolean exprJoint = expr1 && expr2;
	False
	True
	False

	boolean expr1 = 3 < 2;
boolean expr2 = 1 > 5;
boolean exprJoint = expr1 && expr2;
	False
	False
	False

	
	
	
	

	Truth Table for || (OR)

	Example
	Value of expr1
	Value of expr2
	Value of exprJoint

	boolean expr1 = 3 > 2;
boolean expr2 = 1 < 5;
boolean exprJoint = expr1 || expr2;
	True
	True
	True

	boolean expr1 = 3 > 2;
boolean expr2 = 1 > 5;
boolean exprJoint = expr1 ||expr2;
	True
	False
	True

	boolean expr1 = 3 < 2;
boolean expr2 = 1 < 5;
boolean exprJoint = expr1 ||expr2;
	False
	True
	True

	boolean expr1 = 3 < 2;
boolean expr2 = 1 > 5;
boolean exprJoint = expr1 ||expr2;
	False
	False
	False

	Truth Table for ^ (EXCLUSIVE OR)

	Example
	Value of expr1
	Value of expr2
	Value of exprJoint

	boolean expr1 = 3 > 2;
boolean expr2 = 1 < 5;
boolean exprJoint = expr1 ^ expr2;
	True
	True
	False

	boolean expr1 = 3 > 2;
boolean expr2 = 1 > 5;
boolean exprJoint = expr1 ^expr2;
	True
	False
	True

	boolean expr1 = 3 < 2;
boolean expr2 = 1 < 5;
boolean exprJoint = expr1 ^expr2;
	False
	True
	True

	boolean expr1 = 3 < 2;
boolean expr2 = 1 > 5;
boolean exprJoint = expr1 ^expr2;
	False
	False
	False

	Truth Table for ! (NOT)

	Example
	Value of expr1
	Value of expr2
	Value of exprJoint

	boolean expr1 = 3 > 2;
boolean exprJoint = !expr1;
	
	
	

	boolean expr1 = 3 < 2;
boolean exprJoint = !expr1;
	
	
	

	import java.util.Scanner;

public class BooleanExample
{
	public static void main(String[] args)
	{
		Scanner keyboard = new Scanner(System.in);
		
		System.out.println("This program will determine where you were born " +
				"based on your answers to two questions.");
		boolean lovePackers = true;
		boolean loveWisconsin = true;
		System.out.println("Type true if you love the Packers, ");
		System.out.println("or type false if you dislike the Packers.");
		lovePackers = keyboard.nextBoolean();

		System.out.println("Type true if you love Wisconsin, ");
		System.out.println("or type false if you dislike Wisconsin.");
		loveWisconsin = keyboard.nextBoolean();

		if (loveWisconsin == true && lovePackers == true)
			System.out.println("You must be a native Wisconsinite.");
		if (loveWisconsin == true && lovePackers == false)
			System.out.println("You must be a Wisconsin immigrant.");
		if (loveWisconsin == false && lovePackers == true)
			System.out.println("You must be from Minnesota.");
		if (loveWisconsin == false && lovePackers == false)
			System.out.println("You must be from Illinois.");

		//Exclusive or:
		//i.e., you love Wisconsin or you love the Packers, but not both.
		if (loveWisconsin ^ lovePackers)
			System.out.println("That's good enough for me.");

		//Longhand exclusive or:
		if ((loveWisconsin || lovePackers) && !(loveWisconsin && lovePackers))
			System.out.println("That's good enough for me.");
	}
}

	This program will determine where you were born based on your answers to two questions.
Type true if you love the Packers,
or type false if you dislike the Packers.
true
Type true if you love Wisconsin,
or type false if you dislike Wisconsin.
true
You must be a native Wisconsinite.

	This program will determine where you were born based on your answers to two questions.
Type true if you love the Packers,
or type false if you dislike the Packers.
true
Type true if you love Wisconsin,
or type false if you dislike Wisconsin.
false
You must be from Minnesota.
That's good enough for me.
That's good enough for me.

	This program will determine where you were born based on your answers to two questions.
Type true if you love the Packers,
or type false if you dislike the Packers.
false
Type true if you love Wisconsin,
or type false if you dislike Wisconsin.
true
You must be a Wisconsin immigrant.
That's good enough for me.
That's good enough for me.

	This program will determine where you were born based on your answers to two questions.
Type true if you love the Packers,
or type false if you dislike the Packers.
false
Type true if you love Wisconsin,
or type false if you dislike Wisconsin.
false
You must be from Illinois.

More Boolean notes:
· To test if a variable is within a range of numbers:
	WRONG WAY TO TEST A NUMERICAL RANGE
	CORRECT WAY TO TEST A NUMERICAL RANGE

	int numberOfDaysInAMonth = 32;
if (1 <= numberOfDaysInAMonth <= 31)
	...
	int numberOfDaysInAMonth = 32;
if (1 <= numberOfDaysInAMonth &&
		numberOfDaysInAMonth <= 31)
	...

· A Boolean data type can not be cast into other data types.
· DeMorgan’s Law:
!(condition1 && condition2) is the same thing as !condition1 || !condition2
!(condition1 || condition2) is the same thing as !condition1 && !condition2
Example:
!(1 <= numberOfDaysInAMonth && numberOfDaysInAMonth <= 31)

is the same thing as

!(1 <= numberOfDaysInAMonth) || !(numberOfDaysInAMonth <= 31)

· && is a conditional, or short-circuit operator because if the first expression evaluates to false, then the overall expression is false, and so the second expression’s value is not computed because there is no need to.
· || is also a short-circuit operator because if the first expression evaluates to true, then the overall expression is true, and so second expression’s value is not computed because there is no need to.
· & is an unconditional operator because both expressions’ values are computed before the overall value of the expression is determined.

Section 3.3: Problem: A Simple Math Learning Tool
· See www.cs.armstrong.edu/liang/intro8e/book/AdditionQuiz.java

Section 3.4: if Statements
An if statement is used to force a program to execute certain lines of code based on the truth of a given condition.

Section 3.4.1: One-Way if Statements
The if statement by itself forces a program to execute a statement only if a given condition is true.

Syntax of a simple if statement:
if (condition)
	{
conditionTrueStatement(s);
}
nextStatement;

· When the condition is false, the program executes nextStatement right away, thus skipping conditionTrueStatement(s),
· but when the condition is true, the program executes conditionTrueStatement(s) first, and then nextStatement.

Example:
	import java.util.Scanner;

public class CircleCircumference2
{
	public static void main(String[] args)
	{
		System.out.println("This program will compute the circumference of " +
				"a circle given its radius.");
		
		Scanner keyboard = new Scanner(System.in);
		
		// Get the user’s input for a circle radius
		System.out.println("Enter the radius of a circle:");
		double radius = keyboard.nextDouble();

		if (radius >= 0.0)
		 System.out.println("For a circle of radius " + radius +
		 		 ", the circumference is: " + (2*Math.PI*radius) + ".");

		System.out.println("This program is done now.");
	}
}

Section 3.5: Problem: Guessing Birthdays
· See www.cs.armstrong.edu/liang/intro8e/book/GuessingBirthdays.java

Section 3.6: Two-Way if Statements
The if .. else statement forces a program to execute one statement only if a given condition is true, and a different statement if the condition is false.

Syntax of a simple if statement:
if (condition)
	{
conditionTrueStatement(s);
}
else
	{
conditionFalseStatement(s);
}

nextStatement;

· When the condition is true, the program executes conditionTrueStatement(s) first, and then nextStatement.
· When the condition is false, the program executes conditionFalseStatement right away, and then nextStatement.

Example:
	import java.util.Scanner;

public class CircleCircumference
{
	public static void main(String[] args)
	{
		System.out.println("This program will compute the circumference of " +
				"a circle given its radius.");
		
		Scanner keyboard = new Scanner(System.in);
		
		// Get the user’s input for a circle radius
		System.out.println("Enter the radius of a circle:");
		double radius = keyboard.nextDouble();

		if (radius < 0.0)
		 System.out.println("Bad entry; you entered r = " + radius +
		 		 ", and the radius of a circle should NOT be negative.");
		else
		 System.out.println("For a circle of radius " + radius +
		 		 ", the circumference is: " + (2*Math.PI*radius) + ".");
		System.out.println("This program is done now.");
	}
}

Section 3.7: Nested if Statements
Nested if statements are used when you want your program to execute one of many different statements based on one of several different conditions.

Syntax of a nested if statement: Use the syntax of an if … else statement, with the else statements containing additional if … else statements.

Example:
Compute the letter grade of a numerical score according to the following grading scale:
A 92 % - 100 %
AB 88 % - 91 %
B 82 % - 87 %
BC 78 % - 81 %
C 72 % - 77 %
D 65 % - 71 %
F 0 % - 64 %

	import java.util.Scanner;

public class NestedIfExample
{
	public static void main(String[] args)
	{
		Scanner keyboard = new Scanner(System.in);
		
		System.out.println("This program will convert a numerical score " +
				"into a letter Grade");
		
		System.out.println("Enter a numerical score.");
		double score = keyboard.nextDouble();
		String letterGrade;

		if (score >= 91.5)
		 letterGrade = "A";
		else if (score >= 87.5)
		 letterGrade = "AB";
		else if (score >= 81.5)
		 letterGrade = "B";
		else if (score >= 77.5)
		 letterGrade = "BC";
		else if (score >= 71.5)
		 letterGrade = "C";
		else if (score >= 64.5)
		 letterGrade = "D";
		else
		 letterGrade = "F";

		System.out.println("A score of " + score + " earns a letter grade of " +
				letterGrade + ".");
	}
}

	This program will convert a numerical score into a letter Grade
Enter a numerical score.
85.6
A score of 85.6 earns a letter grade of B.

Example:
Write the Wisconsite/Packer messages using nested if statements instead of compound boolean expressions.

	
if (loveWisconsin == true && lovePackers == true)
	System.out.println("You must be a native Wisconsinite.");
if (loveWisconsin == true && lovePackers == false)
	System.out.println("You must be a Wisconsin immigrant.");

if (loveWisconsin == false && lovePackers == true)
	System.out.println("You must be from Minnesota.");
if (loveWisconsin == false && lovePackers == false)
	System.out.println("You must be from Illinois.");

//Exclusive or:
//i.e., you love Wisconsin or you love the Packers, but not both.
if (loveWisconsin ^ lovePackers)
	System.out.println("That's good enough for me.");
	
if (loveWisconsin == true)
	if (lovePackers == true)
	 System.out.println("You must be a native Wisconsinite.");
 else
	 System.out.println("You must be an immigrant.");

else
 if (lovePackers == true)
	 System.out.println("You must be from Minnesota.");
 else
	 System.out.println("You must be from Illinois.");

//Exclusive or:
if (loveWisconsin)
 if (!lovePackers)
	 System.out.println("That's good enough for me.");
 else;
else
 if (lovePackers)
 System.out.println("That's good enough for me.");

Section 3.8: Common Errors in Selection Statements
· Forgetting necessary braces
· Semicolon at the end of the if line
· Redundant testing of boolean values
· Dangling else ambiguity – it doesn’t matter how you indent things, the else always goes with the most recent if.

Section 3.9: Problem: An Improved Math Learning Tool
· See www.cs.armstrong.edu/liang/intro8e/book/SubtractionQuiz.java
· Notice the use of the Math.random() method.
· Note: the expression to generate a random integer between min (inclusive) and max (inclusive) is:
(int)((max - min + 1)*Math.random()) + min

Section 3.10: Problem: Computing Body Mass Index
· See www.cs.armstrong.edu/liang/intro8e/book/ComputeBMI.java

Section 3.11: Problem: Computing Taxes
· See www.cs.armstrong.edu/liang/intro8e/book/ComputeTax.java
· Notice the use of the System.exit(0) method.
· This is a good example of using incremental development and testing.

Section 3.12: Logical Operators
· See notes in Section 3.2 …

Section 3.13: Problem: Determining Leap Year
· See www.cs.armstrong.edu/liang/intro8e/book/LeapYear.java

Section 3.14: Problem: Lottery
· See www.cs.armstrong.edu/liang/intro8e/book/Lottery.java

Section 3.15: switch Statements
switch statements are used when you want to force the program to execute one of many different statements based on the integer values of a single integer expression.

Syntax of a simple switch statement:

switch (integerExpression)
{
case value1:
statement(s)1;
break;
case value2:
statement(s)2;
break;
…

case valueN:
statement(s)N;
break;
default:
	statement(s)Default;
}
nextStatement;

· If the integerExpression evaluates to the number value1, the program executes statement(s)1, and then skips to nextStatement when the break statement is encountered. If the break statement were omitted by accident, the program would execute statement(s)2 next.
· The same pattern follows for other values of integerExpression.
· If integerExpression doesn’t evaluate to any of the values, then the statement(s)Default get executed.
· Notice that parentheses for block statements are not needed after each case…

Example:
	import java.util.Scanner;

public class SwitchStatementExample
{
	public static void main(String[] args)
	{
		Scanner keyboard = new Scanner(System.in);

		System.out.println("This program will give you a one-problem arithmetic quiz.");
		System.out.println("\nYour menu of problem types is:");
		System.out.println("+: Addition problem.");
		System.out.println("-: Subtraction problem.");
		System.out.println("*: Multiplication problem.");
		System.out.println("/: Division problem.");
		System.out.println("Enter the symbol for the type of problem you want.");

		//Get the user's menu choice, then extract the first character.
		String operationChoiceString = keyboard.next();
		char operationChoice = operationChoiceString.charAt(0);

		//Generate two random numbers between 0 and 9 for the quiz question.
		//Use the fact that the Math.random() method
		//generates random floating point numbers between 0 and 1
		int number1 = (int) (Math.random() * 10);
		int number2 = (int) (Math.random() * 10);
		
		//Declare a variable to store the answer to the quiz question.
		int correctAnswer = 0;
		
		//The quiz will always be: number1 operationChoice number2.
		//So, we need to adjust number1 and number2
		//to always give nice answers for the chosen operationChoice.
		switch (operationChoice)
		{
			case '+':	//Compute the answer to the addition quiz question.
				correctAnswer = number1 + number2;
				break;
				
			case '-':	//Compute the answer to the subtraction quiz question.
				//Swap numbers if necessary so number1 is greater than number 2
				if (number2 > number1)
				{
					int temp = number1;
					number1 = number2;
					number2 = temp;
				}
				correctAnswer = number1 - number2;				
				break;
				
			case '*':	//Compute the answer to the multiplication quiz question.
				correctAnswer = number1 * number2;
				break;
				
			case '/':	//Compute the answer to the division quiz question.
				//Make sure the divisor is not zero.
				if (number2 == 0)
					number2 = 3;
				//Create a new dividend that's a multiple of the divisor.
				number1 = (int) (Math.random() * 10) * number2;
				correctAnswer = number1 / number2;
				break;
				
			default://Create the set-up for a simple addition quiz question,
				//because the user isn't smart enough to enter a value for
				//operationChoice correctly.
				number1 = 1;
				number2 = 1;
				correctAnswer = number1 + number2;
				operationChoice = '+';
		}

		//Print the quiz question.
		System.out.println("What is " + number1 + " " + operationChoice +
				" " + number2 + " ?");
		
		//Read the user's answer.
		int userAnswer = keyboard.nextInt();
		
		//Tell the user is s/he is correct or not.
		if (userAnswer == correctAnswer)
			System.out.println("You are correct!");
		else
			System.out.println("Sorry, the correct answer is: " + correctAnswer);
	}
}

	This program will give you a one-problem arithmetic quiz.

Your menu of problem types is:
+: Addition problem.
-: Subtraction problem.
*: Multiplication problem.
/: Division problem.
Enter the symbol for the type of problem you want.
/
What is 9 / 9 ?
11
Sorry, the correct answer is: 1

	This program will give you a one-problem arithmetic quiz.

Your menu of problem types is:
+: Addition problem.
-: Subtraction problem.
*: Multiplication problem.
/: Division problem.
Enter the symbol for the type of problem you want.
B
What is 1 + 1 ?
2
You are correct!

Section 3.16: Conditional Expressions
 A shorthand way to assign one of two values to a variable based on a condition

 Syntax of a conditional expression: booleanExpression ? expression1 : expression2;
· If booleanExpression is true, then expression1 is evaluated; otherwise, expression2 is evaluated.

Example: Computing the absolute value of a number.
	if … else method for computing an absolute value:

	import java.util.Scanner;

public class AbsoluteValue
{
	public static void main(String[] args)
	{
		Scanner keyboard = new Scanner(System.in);
		System.out.println("This program will compute the absolute " +
				"value of a given number.");
		// Get the user’s input for the number
		System.out.println("Enter a number:");
		double x = keyboard.nextDouble();
		
		double abs_x;

		if (x < 0.0)
			abs_x = -x;
		else
			abs_x = x;
		
		System.out.println("|" + x + "| = " + abs_x);
	}
}

	Conditional expression method that does the same thing

	import java.util.Scanner;

public class AbsoluteValue
{
	public static void main(String[] args)
	{
		Scanner keyboard = new Scanner(System.in);
		System.out.println("This program will compute the absolute " +
				"value of a given number.");
		// Get the user’s input for the number
		System.out.println("Enter a number:");
		double x = keyboard.nextDouble();
		
		double abs_x;
		abs_x = (x < 0.0) ? -x: x;
		
		System.out.println("|" + x + "| = " + abs_x);
	}
}

Section 3.17: Formatting Console Output
The printf method of the PrintStream class (in the java.io package) allows you to display the values stored in variables in any of several different formats. The formats you can control include the number of columns used, the number of places after the decimal displayed, and how negative numbers are displayed. The way the printf method works is to replace the variable you want to display in a string with a format specifier (a code that starts with the % character and ends with a letter) that tells the JVM how to display the variable. The variable goes after the string that it is supposed to appear in. Format specifiers may include flags that give additional format information.

Example:
// the following line produces an output where the format specifier
// %6.2f will be replaced with the floating point number 1.5
// written using 6 spaces and 2 digits after the decimal point
// (and followed by a newline)
	System.out.printf("Price is: $%6.2f\n", 1.517);
sample output:
Price is: $ 1.52

	Format Types

	Code
	Type
	Example

	d
	Decimal integer
	System.out.printf("%5d", 123);
//output:
 123

	x
	Hexadecimal integer
	System.out.printf("%5x", 123);
//output:
 7B

	o
	Octal integer
	System.out.printf("%5o", 123);
//output:
 173

	f
	Fixed floating point
	System.out.printf("%6.2f", 123.);
//output:
123.00

	e
	Exponential floating point
	System.out.printf("%10.2e", 123.);
//output:
 1.23e+1

	g
	General floating point (printf decides whether to use f or e)
	System.out.printf("%6.2g", 123);
//output:
123.00

	s
	String
	System.out.printf("%6s", "123");
//output:
 123

	b
	Boolean value
	System.out.printf("%b", lovePackers);
//output:
true

	c
	Character value
	System.out.printf("%c", menuChoice);
//output:
g

	Format Flags

	Flag
	Meaning
	Example

	-
	Left justifiation
	System.out.printf("%-5dhello", 123);
//output:
123 hello

	0
	Show leading zeros
	System.out.printf("%06d", 123);
//output:
000123

	+
	Show a + sign for positive numbers
	System.out.printf("%+6d", 123);
//output:
 +123

	(
	Enclose negative numbers in parentheses
	System.out.printf("%(6d", -123);
//output:
 (123)

	,
	Show decimal separators
	System.out.printf("%,10d", 123000);
//output:
 123,000

Note: to access this functionality use Java version 5.0 or higher.

The format method of the String class also recognizes format specifiers.
Example:

String outputString = String.format("%-5dhello", 123);
System.out.println(outputString);
//output:
23 hello

Section 3.18: Operator Precedence and Associativity

	Operator Precedence Chart

	Precedence
	Operator

	Highest Precedence
	var++ and var-- (Postfix operators)

	
	+, (Unary operators)
++var and --var (Prefix operators)

	
	(type) (casting)

	
	! (Not)

	
	*, /, %

	
	+, (Binary addition and subtraction)

	
	<, <=, >, >= (Comparison)

	
	& (Unconditional and)

	
	^ (Exclusive or)

	
	| (Unconditional or)

	
	&& (Conditional and)

	
	|| (Conditional or)

	Lowest Precedence
	=, +=, -=, *=, /=, %= (Assignment operators)

 From left to right, according to the operator precedence

Section 3.19: (GUI) Confirmation Dialogs
Review:
· The showMessageDialog() method (of the javax.swing.JOptionPane class) displays a message in a dialog box.
· The showInputDialog() method (of the javax.swing.JOptionPane class) displays a dialog box that can be used to retrieve String input.

New GUI method:
· The showConfirmDialog() method (of the javax.swing.JOptionPane class) displays a dialog box with Yes, no, and Cancel buttons.
· This method returns a value of 0 (stored in the constant JOptionPane.YES_OPTION), 1 (stored in the constant JOptionPane.NO_OPTION), or 2 (stored in the constant JOptionPane.CANCEL_OPTION).
· See www.cs.armstrong.edu/liang/intro7e/book/GuessBirthDateUsingConfirmationDialog.java

