

Computer Science Notes

Chapter 4: Loops
These notes are meant to accompany Introduction to Java Programming: Brief Version, eighth edition by Y. Daniel Lang.

Programming Skills in a Nutshell:
At the end of this chapter you should have the following programming skills:
1. Use a while loop to repeat a block of code.
2. Use a do-while loop to repeat a block of code.
3. Use a for loop to repeat a block of code.
4. Be able to translate from one type of loop to the other.
5. [bookmark: _GoBack]Know the advantages of one type of loop over the other
6. Here is a template that uses the key programming skills you should have at this point:

	import java.util.Scanner;

public class Chap04Basics
{

	/** Run a three-pick lottery game with input validation.
	 * @param args is not used.
	 */
	public static void main(String[] args)
	{
		// Tell the user what the program does.
		System.out.println("This program simulates a three-number lottery game.\n");
		
		Scanner keyboard = new Scanner(System.in);
		
		int continueCondition = 1;
		while (continueCondition == 1)
		{
			//Prompt the user for the range of numbers.
			//Perform input validation on the lower bound to ensure it's positive.
			int lowerBound;
			do
			{
				System.out.println("\nPlease enter a positive lower bound " +
						"for the lottery numbers:");
				lowerBound = keyboard.nextInt();
				if (lowerBound <= 0)
					System.out.println("Invalid lower bound. Lower bound" +
							" must be positive.");
			} while (lowerBound < 1);
			
			//Perform input validation on the upper bound to ensure it is
			//two more or more than the first.
			int upperBound;
			do
			{
				System.out.println("Please enter a positive upper bound for the "
								+ "lottery numbers:");
				upperBound = keyboard.nextInt();
				if (upperBound < (lowerBound + 2))
					System.out.println("Invalid upper bound. Upper bound " +
							"must be two or more than the lower bound.");
			} while (upperBound < (lowerBound + 2));
			
			//Pick three distinct numbers.
			int lotto1, lotto2, lotto3;
			lotto1 = (int) (Math.random() * (upperBound - lowerBound + 1))
					+ lowerBound;
			do
			{
				lotto2 = (int) (Math.random() * (upperBound - lowerBound + 1))
						+ lowerBound;
			} while (lotto2 == lotto1);
			
			do
			{
				lotto3 = (int) (Math.random() * (upperBound - lowerBound + 1))
						+ lowerBound;
			} while (lotto3 == lotto1 || lotto3 == lotto2);
			
			//Prompt the user for three picks.
			//Perform input validation to ensure the picks are in the range
			//and to ensure there are no duplicate picks.
			int pick1 = -1, pick2 = pick1, pick3 = pick1;
			for (int i = 1; i <= 3; i++)
			{
				int tempNum;
				boolean tempNumIsOutsideRange = false;
				boolean tempNumIsDuplicate = false;

				do
				{
					System.out.println("Please enter a number between "
							+ lowerBound + " and " + upperBound
							+ " for lottery pick #" + i + ":");
					tempNum = keyboard.nextInt();

					tempNumIsOutsideRange = (tempNum < lowerBound)
							|| (tempNum > upperBound);
					if (tempNumIsOutsideRange)
						System.out.println("Error: Pick is outside " +
								"of range.");

					tempNumIsDuplicate = (tempNum == pick1) ||
						(tempNum == pick2);
					if (tempNumIsDuplicate)
						System.out.println("Error: Pick duplicates " +
										"another pick.");

				} while (tempNumIsOutsideRange || tempNumIsDuplicate);

				if (i == 1)
					pick1 = tempNum;
				else if (i == 2)
					pick2 = tempNum;
				else
					pick3 = tempNum;
			}
			
			//Show the results:
			System.out.println("\nThe range of your lottery picks are from "
					+ lowerBound + " to " + upperBound + ".");
			System.out.printf("Here are the lotto numbers:%4d %4d %4d\n",
					lotto1, lotto2, lotto3);
			System.out.printf("Here are your picks :%4d %4d %4d\n",
					pick1, pick2, pick3);
			if (pick1 == lotto1 && pick2 == lotto2 && pick3 == lotto3)
				System.out.println("Exact match! You win $10,000!");
			else
			{
				//Thanks to Patrick Kirk for this efficient technique
				//of counting the number of matches!
				int numMatches = 0;
				if (pick1 == lotto1 || pick1 == lotto2 || pick1 == lotto3)
					numMatches++;
				if (pick2 == lotto1 || pick2 == lotto2 || pick2 == lotto3)
					numMatches++;
				if (pick3 == lotto1 || pick3 == lotto2 || pick3 == lotto3)
					numMatches++;
				if (numMatches > 0)
					System.out.println("You had " + numMatches
							+ " matching picks." + " You win $" +
							numMatches + ",000!");
				else
					System.out.println("No matches anywhere. You win " +
							"nothing!");
			}
			System.out.println("\nEnter 1 to continue or any other number " +
					"to quit");
			continueCondition = keyboard.nextInt();
		}//end while () loop
		System.out.println("Program Chap04Basics is now terminating.");
	}//end method main(String[])
}//end class Chap04Basics

	This program simulates a three-number lottery game.

Please enter a positive lower bound for the lottery numbers:
-9
Invalid lower bound. Lower bound must be positive.

Please enter a positive lower bound for the lottery numbers:
0
Invalid lower bound. Lower bound must be positive.

Please enter a positive lower bound for the lottery numbers:
2
Please enter a positive upper bound for the lottery numbers:
-5
Invalid upper bound. Upper bound must be two or more than the lower bound.
Please enter a positive upper bound for the lottery numbers:
3
Invalid upper bound. Upper bound must be two or more than the lower bound.
Please enter a positive upper bound for the lottery numbers:
4
Please enter a number between 2 and 4 for lottery pick #1:
1
Error: Pick is outside of range.
Please enter a number between 2 and 4 for lottery pick #1:
1
Error: Pick is outside of range.
Please enter a number between 2 and 4 for lottery pick #1:
2
Please enter a number between 2 and 4 for lottery pick #2:
2
Error: Pick duplicates another pick.
Please enter a number between 2 and 4 for lottery pick #2:
3
Please enter a number between 2 and 4 for lottery pick #3:
2
Error: Pick duplicates another pick.
Please enter a number between 2 and 4 for lottery pick #3:
3
Error: Pick duplicates another pick.
Please enter a number between 2 and 4 for lottery pick #3:
4

The range of your lottery picks are from 2 to 4.
Here are the lotto numbers: 2 4 3
Here are your picks : 2 3 4
You had 3 matching picks. You win $3,000!

Enter 1 to continue or any other number to quit
1

Please enter a positive lower bound for the lottery numbers:
1
Please enter a positive upper bound for the lottery numbers:
10
Please enter a number between 1 and 10 for lottery pick #1:
2
Please enter a number between 1 and 10 for lottery pick #2:
5
Please enter a number between 1 and 10 for lottery pick #3:
7

The range of your lottery picks are from 1 to 10.
Here are the lotto numbers: 4 5 3
Here are your picks : 2 5 7
You had 1 matching picks. You win $1,000!

Enter 1 to continue or any other number to quit
0
Program Chap04Basics is now terminating.

Book’s Statement of Skills:
1. To write programs for executing statements repeatedly using a while loop. (4.2)
2. To develop a program for GuessNumber. (4.2.1)
3. To follow the loop design strategy to develop loops. (4.2.2)
4. To develop a program for SubtractionQuizLoop. (4.2.3)
5. To control a loop with a sentinel value (4.2.4)
6. To obtain large input from a file using input redirection rather than typing from the keyboard (4.2.4)
7. To write loops using do-while statements. (4.3)
8. To write loops using for statements. (4.4)
9. To discover the similarities and differences between the three types of loops. (4.5)
10. To write nested loops. (4.6)
11. To learn techniques for minimizing numerical error (4.7)
12. To learn loops from a variety of examples (GCD, FutureTuition, MonteCarloSimulation) (4.8)
13. To implement program control with break and continue. (4.9)
14. (GUI) To control a loop with a confirmation dialog. (4.10)

Section 4.1: Introduction
A loop is a structure that allows you to repeat a block of statements as many times as is desired or needed (or more, if your program has an infinite loop).

Example: Print Welcome to Java! 100 times

	Without loops
	Using loops

	// Print ″Welcome to Java! 100 times
System.out.println("Welcome to Java!″);
System.out.println("Welcome to Java!″);
System.out.println("Welcome to Java!″);
System.out.println("Welcome to Java!″);
System.out.println("Welcome to Java!″);

//… 94 more println statements…

System.out.println("Welcome to Java!″);

	// Print ″Welcome to Java!″ 100 times
for (int count = 1; count <= 100; count++)
 System.out.println("Welcome to Java!″);

Section 4.2: The while Loop
A while loop checks to see if a condition is true, executes a block of code if the condition is true, and then keeps checking the condition and executing the block of code as long as the condition is true.

Syntax of a while statement:
while (condition)
{
conditionTrueStatement(s);
}
nextStatement;

· When the condition is true, the program executes conditionTrueStatement(s).
· When conditionTrueStatement(s) are done executing, the program goes back to the condition, and if the condition is still true, the program executes conditionTrueStatement(s) again.
· This process of looping back to the condition keeps repeating until the condition is false, at which point the program jumps down and executes nextStatement.

Example:
	public class PrintLoop
{
	public static void main(String[] args)
	{
		// Print "Welcome to Java!" 100 times
 int counter = 1;
 int maxPrintLines = 100;
 while (counter <= maxPrintLines)
 {
 System.out.println("Welcome to Java!");
 counter++;
 }
	}
}

Example:
	import java.util.Scanner;
public class Guessing7Game
{
	public static void main(String[] args)
	{
		// a loop that plays a guessing game

		Scanner keyboard = new Scanner(System.in);

		System.out.println("Enter a guess:");
		int guess = keyboard.nextInt();

		while (guess != 7)
		{
			System.out.println("Bad guess.");
			System.out.println("Enter a guess:");
			guess = keyboard.nextInt();
		}
		System.out.println("You guessed correctly!");
	}
}

Example: INPUT VALIDATION: Notice that this loop keeps on repeating until a valid piece of data is entered.
	import java.util.Scanner;

public class CircleCircumference
{
	public static void main(String[] args)
	{
		System.out.println("This program will compute the circumference of " +
				"a circle given its radius.");
		
		Scanner keyboard = new Scanner(System.in);
		
		// Get the user’s input for a circle radius
		System.out.println("Enter the radius of a circle:");
		double radius = keyboard.nextDouble();

		// a loop that validates an input for a radius
		while (radius < 0.0)
		{
			System.out.println("Bad entry; you entered r = " + radius +
		 	", and the radius of a circle should NOT be negative.");
			System.out.println("Enter a positive radius for the circle:");
			radius = keyboard.nextDouble();
		}		
		System.out.println("For a circle of radius " + radius +
				", the circumference is: " + (2*Math.PI*radius) + ".");
	}
}

Example: PROGRAM REPETITION: This is useful if you want to repeat the entire body of a program.

	import java.util.Scanner;

public class CompareNumbers
{
	/** Prompts the user for two numbers to compare.
	* @param args is not used
	*/
	public static void main (String[] args)
	{
		System.out.println("This program compare two numbers as many times as you like.");

		//Declare variables for the data to be read in: two numbers for comparison.
		double num1, num2;

		//Create a Scanner object for reading in the user's input
		Scanner keyboard = new Scanner(System.in);

		int compareAgain = 1;
		while (compareAgain == 1)
		{
			//get the user's data
			System.out.println("\nPlease enter a number:");
			num1 = keyboard.nextDouble();

			System.out.println("Please enter a second number:");
			num2 = keyboard.nextDouble();
			
			//Compare the numbers
			System.out.println("Here is the comparison:");
			if (num1 < num2)
				System.out.println(num1 + " < " + num2);
			else if (num1 > num2)
				System.out.println(num1 + " > " + num2);
			else
				System.out.println(num1 + " = " + num2);

			System.out.println("Enter 1 to continue or 0 to quit:");
			compareAgain = keyboard.nextInt();
		}
	System.out.println("\nProgram Terminated.");
	}
}

Example: Notice that a variable can be defined in a loop, but that it only exists in memory while the loop is executing.
	
public class InvestmentMaturityDate
{
	public static void main(String[] args)
	{
		// a loop that computes how many years
		// until a $10,000 investment reaches a target balance of $20,000
		// at an interest rate of 8%

		double initialBalance = 10000.00;
		double targetBalance = 20000.00;
		double rate = 0.08;
		double currentBalance = initialBalance;
		int years = 0;

		while (currentBalance < targetBalance)
		{
			years++;
			double interest = currentBalance * rate;
			currentBalance = currentBalance + interest;
		}
		//NOTE: the interest variable no longer exists outside the loop
		//SO, it can not be used for output or further calculations.

		System.out.println("An investment of $" + initialBalance +
			" earning " + (rate*100) + "% interest per year" +
			" grows to at least $" + targetBalance +
			" after " + years + " years.");
		System.out.printf("In fact, the investment is worth $%,9.2f " +
				" at the end of the %2d years\n", currentBalance, years);

	}
}

Example: A loop that executes a pre-determined number of times.
	public class FutureValueOfAnInvestment
{
	public static void main(String[] args)
	{
		// a loop that computes the value of a $10,000 investment
		// after 5 years when earning at an interest rate of 8%
		double initialBalance = 10000.00;
		double rate = 0.08;
		int maxYears = 5;
		double currentBalance = initialBalance;
		int years = 0;

		while (years < maxYears)
		{
		 years++;
		 double interest = currentBalance * rate;
		 currentBalance = currentBalance + interest;
		}

		System.out.println("An investment of $" +
				String.format("%,10.2f",initialBalance) +
		 " invested at " + (rate*100) + "% interest per year " +
		 "grows to $" + String.format("%,10.2f",currentBalance) +
		 " after " + maxYears + " years.");
	}
}

It is VERY common that loops are controlled by an integer variable that gets incremented every time the loop executes. Such controlling integer variables are called control variables or counters.

Common errors with counters:
· Infinite loops: due to incrementing the counter incorrectly or not at all, or having a bad condition.

	The following loop is “infinite” because the counter years is never incremented, so it will always be less than maxYears.

	while (years < maxYears)
{
 double interest = currentBalance * rate;
 currentBalance = currentBalance + interest;
}

· Off-by-one errors: due to using a bad starting value for the counter or an incorrect condition.

	The following loop will compute one year too many of interest payments because when starting a counter at zero, you need to terminate the loop at one less than the number of iterations you want.

	int years = 0;
while (years <= maxYears)
{
	years++;
	double interest = currentBalance * rate;
	currentBalance = currentBalance + interest;
}

Section 4.2.1: Problem: Guessing Numbers
· See http://www.cs.armstrong.edu/liang/intro8e/html/GuessNumberOneTime.html
· See http://www.cs.armstrong.edu/liang/intro8e/html/GuessNumber.html

Section 4.2.2: Loop Design Strategies
Step1: Identify the statements that need to be repeated.
Step 2: Wrap those statements in a basic loop just to get the process started:
while (true) {
	statements;
}
Step 3: Replace the true with an appropriate loop continuation condition, and add a statement or statements into the body of the loop for controlling the loop.

Section 4.2.3: Problem: An Advanced Math Learning Tool
· See http://www.cs.armstrong.edu/liang/intro8e/html/SubtractionQuizLoop.html

Section 4.2.4: Controlling a Loop with a Sentinel Value
· If you want the user of a program to decide when to end a loop, then another trick you can use is to give the user a special input value to enter that does not make sense in terms of the other data being entered. When this special input value is encountered, the loop ends. This special input value is called a sentinel value.
· See http://www.cs.armstrong.edu/liang/intro8e/html/SentinelValue.html

Example: Computing the average of a list of user-entered numbers.
	import java.util.Scanner;
public class Average
{
	public static void main (String[] args)
	{
		System.out.println("This program computes the average of non-negative " +
				"numbers.");

		//Declare variables for the data entries, number of entries, and average.
		double dataEntry = 0.0, average = 0.0;
		int numEntries = 0;

		//Create a Scanner object for reading in the user's input
		Scanner keyboard = new Scanner(System.in);

		while (dataEntry >= 0.0)
		{
			//get the user's data
			System.out.println("Please enter a number (or a negative value " +
					"to quit):");
			dataEntry = keyboard.nextDouble();
			if (dataEntry >= 0.0)
			{
				average += dataEntry;
				numEntries++;
			}
		}
		if (numEntries > 0)
		{
			average = average / numEntries;
			System.out.println("\nThe average of your " + numEntries +
					" values is: " + average);
		}
		else
			System.out.println("\nNo data enetered.");

		System.out.println("\nProgram Terminated.");
		}//end main()
}

	This program computes the average of non-negative numbers.
Please enter a number (or a negative value to quit):2
Please enter a number (or a negative value to quit):3
Please enter a number (or a negative value to quit):4
Please enter a number (or a negative value to quit):-1

The average of your 3 values is: 3.0

Program Terminated.

Section 4.2.5: Input and Output Redirections
· To read data from a text file rather than from the keyboard, you can use input redirection to redirect the program to use data from a file instead of from the keyboard
· Example: from the command line, type the following (SentinelValue.java and input.txt have to be in the same folder):
java SentinelValue < input.txt
· To write data to a text file rather than to the console, you can use output redirection to redirect the program to write the data to a file instead of the console
· Example: from the command line, type the following:
java ClassName > output.txt
· You can do both input and output redirection at the same time…
· Example: from the command line, type the following (SentinelValue.java and input.txt have to be in the same folder):
java SentinelValue < input.txt > output.txt

Section 4.3: The do-while Loop
A do-while loop executes the body of the loop before checking the condition. This can result in slightly more efficient code when you know you want the loop to execute at least once.
Notice the semicolon after the while clause.

Syntax of a do-while statement:
do
{
Statement(s);
} while (condition);
nextStatement;

· When the condition is true, the program goes back to the do and executes the Statement(s).
· When the condition is false, the program executes nextStatement.

Example: Notice that the program below does not have to have the prompt and input lines of code repeated like in the while loop, but that you do need an if statement to handle the error message to the user when an incorrect guess is entered.

	import java.util.Scanner;
public class Guessing7Game
{
	public static void main(String[] args)
	{
		// a loop that plays a guessing game

		Scanner keyboard = new Scanner(System.in);

		int guess;

		do
		{
			System.out.println("Enter a guess:");
			guess = keyboard.nextInt();
			if (guess != 7) System.out.println("Bad guess.");
		}
		while (guess != 7);

		System.out.println("You guessed correctly!");
	}
}

· See http://www.cs.armstrong.edu/liang/intro8e/html/TestDoWhile.html for another example.

Section 4.4: for Loops
Loops that depend on the value of an incremented counter for the condition are so common that a looping structure called the for loop was created that makes this type loop more efficient:

Syntax of a simple for statement:
for (initial_action; loop_continuation_condition; action_after_each_iteration)
Statement;
nextStatement;

Syntax of a block for statement:
for (initial_action; loop_continuation_condition; action_after_each_iteration)
{
Statement(s);
}
nextStatement;

· The initial_action is statement that is usually used to declare and initialize a control variable for the loop.
· As long as the loop_continuation_condition is true, the program executes the Statement(s).
· When the loop_continuation_condition is false, the program executes nextStatement.
· The action_after_each_iteration is a statement that executes after the last statement in the body of the loop; it is usually used to adjust the control variable (usually by incrementing it or decrementing it).
· Control variables declared inside the header of a loop can not be accessed by statements outside the loop.

Example: A loop that executes a pre-determined number of times. It is possible to both define and initialize a variable in the header, but that variable only exists in memory while the loop is executing…
	public class FutureValueOfAnInvestment
{
	public static void main(String[] args)
	{
		// a loop that computes the value of a $10,000 investment
		// after 5 years when earning at an interest rate of 8%
		double initialBalance = 10000.00;
		double rate = 0.08;
		int maxYears = 5;
		double currentBalance = initialBalance;
		int years = 0;

		for (years = 1; years <= maxYears; years ++)
		{
			double interest = currentBalance * rate;
			currentBalance = currentBalance + interest;
		}

		System.out.println("An investment of $" +
				String.format("%,10.2f",initialBalance) +
		 " invested at " + (rate*100) + "% interest per year " +
		 "grows to $" + String.format("%,10.2f",currentBalance) +
		 " after " + maxYears + " years.");
	}
}

Also notice that the loop could be made more efficient as follows:

for (years = 1; years <= maxYears; years ++)
	currentBalance = currentBalance + currentBalance * rate;

Or as follows:

for (years = 1; years <= maxYears; years ++)
	currentBalance += currentBalance * rate;

Example:

	public class IntegerSum
{
	public static void main(String[] args)
	{
		// a loop that sums the numbers from 1 to 10

		int sum = 0;
		int lastInteger = 1000;

		for (int i= 1; i <= lastInteger; i++)
			sum += i;

		System.out.println("The sum of integers from 1 to " + lastInteger +
				" = " + sum);
	}
}

For loop hints:
1. use for loops for their intended purpose; do not change the counter, change the starting value, change the ending value, or increment the counter in the body of the loop; only do this in the for loop header.
2. don’t forget a semicolon after a for loop in which all the work of the loop is done in the header.
(Bad) Example: This works, but violates hint #1; … notice the semicolon immediately after the header.

	public class InvestmentMaturityDate
{
	public static void main(String[] args)
	{
		// a loop that computes how many years
		// until a $10,000 investment reaches a target balance of $20,000
		// at an interest rate of 8%

		double initialBalance = 10000.00;
		double targetBalance = 20000.00;
		double rate = 0.08;
		double currentBalance = initialBalance;
		int years = 0;

	
		for (years = 1;
			(currentBalance = currentBalance * (1 + rate)) < targetBalance;
				years ++) ;
		
		System.out.println("An investment of $" + initialBalance +
			" earning " + (rate*100) + "% interest per year" +
			" grows to at least $" + targetBalance +
			" after " + years + " years.");
		System.out.printf("In fact, the investment is worth $%,9.2f " +
				" at the end of the %2d years\n", currentBalance, years);
	}
}

3. don’t use a semicolon after the header when you want the loop to iterate the statement after the header.
4. don’t use != to test the end of a range; use <= instead.
5. when the counter is defined in the header of a for loop, it only has scope while the loop is iterating; it is no longer defined after the loop
6. you can declare multiple variables and have multiple updates (all separated by semicolons) in the header of a for loop, but this is sometimes considered bad form

Section 4.5: Which Loop to Use?
· while and for loops are pre-test loops.
· do-while loops are post-test loops.
· Use a while loop when you want to test the condition first.
· Use a do-while loop when you want the body to execute at least once.
· Use a for loop when you want to test the condition first, and the loop will execute a pre-determined number of times.

	
public class IntegerSum
{
	public static void main(String[] args)
	{
		//Sum the numbers from 1 to 1000.
		int lastInteger = 1000;
		int sum = 0;
		//Perform the calculation with a for loop.
		for (int i= 1; i <= lastInteger; i++)
			sum += i;
		System.out.println("The sum of integers from 1 to " + lastInteger +
				" = " + sum);
		
		//Perform the calculation with a while loop.
		sum = 0;
		int i = 0;
		while (i <= lastInteger)
		{
			sum += i;
			i++;
		}
		System.out.println("The sum of integers from 1 to " + lastInteger +
				" = " + sum);
		//Perform the calculation with a do loop.
		sum = 0;
		i = 0;
		do
		{
			sum += i;
			i++;
		}while (i < lastInteger+1);
		System.out.println("The sum of integers from 1 to " + lastInteger +
				" = " + sum);
	}
}

	The sum of integers from 1 to 1000 = 500500
The sum of integers from 1 to 1000 = 500500
The sum of integers from 1 to 1000 = 500500

Section 4.6: Nested Loops
A nested loop is a loop within another loop. Each time the outer loop iterates, the entire inner loop gets executed. Nested loops are used when you have to process data that depends on two “dimensions”. One common application is processing graphics, and another is processing any “two-dimensional” type of information.

Example: Print a triangular shape as follows:
X
XX
XXX
XXXX
XXXXX

	public class PrintRightTriangle
{
	public static void main(String[] args)
	{
		// Print a right triangle of x's.
		int maxRows = 5;

		for (int row = 1; row <= maxRows; row++)
		{
			for (int col = 1; col <= row; col++)
			{
				System.out.print("X");
			}
			System.out.println();
		}
	}
}

· See http://www.cs.armstrong.edu/liang/intro8e/html/MultiplicationTable.html

Section 4.7: Minimizing Numerical Errors
Tips:
· Use double instead of float.
· Use integers to count instead of floating-point numbers.
· Process small numbers first.
· Add or subtract numbers of similar magnitude.
· See http://www.cs.armstrong.edu/liang/intro8e/html/TestSum.html

Section 4.8: Case Studies

Section 4.8.1: Problem: Finding the Greatest Common Divisor
· See http://www.cs.armstrong.edu/liang/intro8e/html/GreatestCommonDivisor.html

Section 4.8.2: Problem: Predicting the Future Tuition
· See http://www.cs.armstrong.edu/liang/intro8e/html/FutureTuition.html

Section 4.8.3: Problem: Monte Carlo Simulation
· See http://www.cs.armstrong.edu/liang/intro8e/html/MonteCarloSimulation.html

Section 4.9: Keywords break and continue
· break immediately ends the innermost loop that contains it. break breaks out of a loop. It is generally used with an if statement.
· continue only ends the current iteration of the loop that contains it. Program control goes to the end of the loop body. continue breaks out of an iteration. It is generally used with an if statement.
· See http://www.cs.armstrong.edu/liang/intro8e/html/TestBreak.html
· See http://www.cs.armstrong.edu/liang/intro8e/html/TestContinue.html
· See http://www.cs.armstrong.edu/liang/intro8e/html/GuessNumberUsingBreak.html

Section 4.9.1: Problem: Displaying Prime Numbers
· See http://www.cs.armstrong.edu/liang/intro8e/html/PrimeNumber.html

 Random Numbers using the Random Class and their use in Simulations
A lot of times, you need a random number, like to simulate the roll of some dice, a card picked at random from a deck, or other things. The Random class generates random numbers for you.
· You can import the class java.util.Random instead of using Math.random()…
· The nextInt(n) method returns a random integer between 0 (inclusive) and n (exclusive).
· The nextDouble() method returns a random floating-point number between 0 (inclusive) and 1 (exclusive).

Example: simulate a pair of dice.

	import java.util.Random;
import java.util.Scanner;

/** Simulates rolling dice.
*/
public class Dice
{

	/** Rolls the dice.
	* @param args is not used
	*/
	public static void main (String[] args)
	{
		Random generator = new Random();
		Scanner keyboard = new Scanner(System.in);
		int repeatSentinel;
		
		System.out.println("This program will simulate the roll " +
				"of a pair of dice.");
		do
		{
			int die1 = generator.nextInt(6) + 1;
			int die2 = generator.nextInt(6) + 1;
			
			System.out.println("The roll is: " + die1 + " and " + die2);
			
			System.out.println("Enter 1 to continue or 0 to quit.");
			repeatSentinel = keyboard.nextInt();
		}while (repeatSentinel > 0);
	}
}

Example: Compute the area of a circle by “throwing darts” at a quarter circle of radius 1 in the square of
0 < x < 1 and 0 < y < 1. Techniques like this are called Monte Carlo simulations.

	import java.util.Random;

/** Computes area of a circle using random numbers.
*/
public class MonteCarloCircle
{

	/** Computes area of a circle using random numbers.
	* @param args is not used
	*/
	public static void main (String[] args)
	{
		Random generator = new Random();
		int totalPoints = 10000;
		int interiorHits = 0;
		
		System.out.println("This program will compute the approximate " +
				"area of a circle of radius 1 using " + totalPoints +
				" random numbers.\n");
		
		for (int i = 1; i <= totalPoints; i++)
		{
			double x = generator.nextDouble();
			double y = generator.nextDouble();
			if ((x*x + y*y) < 1) interiorHits++;
		}
		
		System.out.println("The approximate area of a radius=1 circle is "
		+ 4. * interiorHits / totalPoints);
	}
}

Section 4.10: Controlling a Loop with a Confirmation Dialog
If you want the user of a program to decide when to end a loop, you can prompt them if they want to continue using a confirmation dialog box (as opposed to prompting for input from the console in some of the examples above).
Example: PROGRAM REPETITION using a confirmation dialog.
	import javax.swing.JOptionPane;

public class Chap04BasicsGUI
{
	/** Prompts the user for two numbers to compare.
	* @param args is not used
	*/
	public static void main (String[] args)
	{
		//Tell the user what the program does
		JOptionPane.showMessageDialog(null, "This program compare two " +
				"numbers as many times as you like."
				, "Chap04BasicsGUI Intro",
				JOptionPane.INFORMATION_MESSAGE);

		//Declare variables for the data to be read in: two numbers for comparison.
		double num1, num2;
		String numberString;

		int compareAgain = JOptionPane.YES_OPTION;
		while (compareAgain == JOptionPane.YES_OPTION)
		{
			//get the user's data
			numberString = JOptionPane.showInputDialog(null, "Please enter the " +
				"first number:", "First Number",
				JOptionPane.QUESTION_MESSAGE);
			num1 = Double.parseDouble(numberString);

			numberString = JOptionPane.showInputDialog(null, "Please enter the " +
					"second number:", "Second Number",
					JOptionPane.QUESTION_MESSAGE);
			num2 = Double.parseDouble(numberString);
			
			//Compare the numbers
			String resultString = "Here is the comparison:\n";
			if (num1 < num2)
				resultString += (num1 + " < " + num2);
			else if (num1 > num2)
				resultString += (num1 + " > " + num2);
			else
				resultString += (num1 + " = " + num2);
			
			JOptionPane.showMessageDialog(null, resultString, "Results",
					JOptionPane.INFORMATION_MESSAGE);

			compareAgain = JOptionPane.showConfirmDialog(null,
				 "Do you want to continue?");
		}
	JOptionPane.showMessageDialog(null, "Program Terminated.", "All Done",
				JOptionPane.INFORMATION_MESSAGE);
	}
}

